Projection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Numerical Results

نویسندگان

  • Thomas A. Manteuffel
  • Stephen F. McCormick
  • Oliver Röhrle
  • John W. Ruge
چکیده

The goal of this paper is to introduce a new multilevel solver for two-dimensional elliptic systems of nonlinear partial differential equations (PDEs), where the nonlinearity is of the type u∂v. The incompressible Navier-Stokes equations are an important representative of this class and are the target of this study. Using a first-order system least-squares (FOSLS) approach and introducing a new variable for ∂v, for this class of PDEs we obtain a formulation in which the nonlinearity appears as a product of two different dependent variables. The result is a system that is linear within each variable but nonlinear in the cross terms. In this paper, we introduce a new multilevel method that treats the nonlinearities directly. This approach is based on a multilevel projection method (PML [23]) applied to the FOSLS functional. The implementation of the discretization process, relaxation, coarse-grid correction, and cycling strategies is discussed, and optimal performance is established numerically. A companion paper [22] establishes a two-level convergence proof for this new multilevel method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection Multilevel Methods for Quasilinear Elliptic Partial Differential Equations: Theoretical Results

In a companion paper [8], we propose a new multilevel solver for two-dimensional elliptic systems of partial differential equations (PDEs) with nonlinearity of type u∂v. The approach is based on a multilevel projection method (PML [9]) applied to a first-order system least-squares (FOSLS) functional that allows us to treat the nonlinearity directly. While [8] focuses on computation, here we con...

متن کامل

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Projection-free approximation of geometrically constrained partial differential equations

We devise algorithms for the numerical approximation of partial differential equations involving a nonlinear, pointwise holonomic constraint. The elliptic, parabolic, and hyperbolic model equations are replaced by sequences of linear problems with a linear constraint. Stability and convergence hold unconditionally with respect to step sizes and triangulations. In the stationary situation a mult...

متن کامل

A Review on Nonlinear Elliptic Partial Differential Equations and Approaches for Solution

The present paper deals with a survey of various solutions of semi-linear, quasilinear and fully non-linear elliptic problems, developed by numerous researchers in a chronological order as the field developed year after year from 2000. Firstly we have collected some semi-linear, quasilinear and fully nonlinear elliptic models arising in different branches of science and engineering. Then a larg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006